Publications
On the Role of the Action Space in Robot Manipulation Learning and Sim-to-Real Transfer
Elie Aljalbout*, Felix Frank*, Maximilian Karl, Patrick van der Smagt
RA-L, 2024
[ pdf | url ] The Shortcomings of Force-from-Motion in Robot Learning
Elie Aljalbout, Felix Frank, Patrick van der Smagt, Alexandros Paraschos
ICRA, 2024
[ pdf ] CLAS: Coordinating Multi-Robot Manipulation with Central Latent Action Spaces
Elie Aljalbout, Maximilian Karl, Patrick van der Smagt
L4DC, 2023
[ pdf | url ] Learning to Centralize Dual-Arm Assembly
Marvin Alles, Elie Aljalbout
Frontiers in Robotics and AI, 2022
[ pdf | url ] Seeking Visual Discomfort: Curiosity-driven Representations for Reinforcement Learning
Elie Aljalbout, Maximilian Ulmer, Rudolph Triebel
ICRA, 2022
[ pdf | url ] Learning robotic manipulation skills using an adaptive force-impedance action space
Maximilian Ulmer, Elie Aljalbout, Sascha Schwarz, Sami Haddadin
arXiv, 2021
[ pdf ] Learning Vision-based Reactive Policies for Obstacle Avoidance
Elie Aljalbout, Ji Chen, Konstantin Ritt, Maximilian Ulmer and Sami Haddadin
CoRL, 2020
[ pdf | url ] How to Make Deep RL Work in Practice
Nirnai Rao*, Elie Aljalbout*, Axel Sauer*, Sami Haddadin (*Shared first authorship)
NeurIPS, Workshop on Deep RL, 2020
[ pdf | url ] Task-Independent Spiking Central Pattern Generator: A Learning-Based Approach
Elie Aljalbout, Florian Walter, Florian Roehrbein, and Alois Knoll
Neural Processing Letters, Springer, 2020
[ pdf | url ] Tracking Holistic Object Representations
Axel Sauer*, Elie Aljalbout*, Sami Haddadin (*Shared first authorship)
BMVC (oral, acceptance rate: 4%), **Best Science Paper Award**, 2019
[ pdf | url ] Associative deep clustering: Training a classification network with no labels
Philip Haeusser, Johannes Plapp, Vladimir Golkov, Elie Aljalbout, and Daniel Cremers
GCPR, 2018
[ pdf ] Clustering with Deep Learning: Taxonomy and New Methods
Elie Aljalbout, Vladimir Golkov, Yawar Siddiqui, Maximilian Strobel, and Daniel Cremers
arXiv, 2018
[ pdf ]